VH-IVUS Native Plaque and Neointima

Soo-Jin Kang, MD., PhD.

Department of Cardiology, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure Statement of Financial Interest

I, Soo-Jin Kang DO NOT have a financial interest /arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

Grayscale vs. VH IVUS

Validation of VH-IVUS with Histology

	Sensitivity	Specificity	Accuracy
Fibrous tissue	84%	99%	93%
Fibrofatty	87%	95%	93%
Necrotic core	97%	94%	94%
Dense calcium	98%	99%	99%

Nair et al. Eurointervention 2007;3:113-20

Causes of Coronary Thrombosis

Rupture 60-75%

Erosion 30-35%

Calcified nodule (2-7%)

Intra-plaque hemorrhage

Virmani R et al. Arterioscler Thromb Vasc Biol 2000; 20: 1262 resbyterian

Morphological Predictors of Plaque Rupture Odds Ratio 95% CI р 0.02 %Necrotic core 2.0 1.1 - 3.7Cap thickness (<65 µm) 0.005 0.35 0.2 - 0.70.052 %Macrophage 1.0 - 3.21.8

Thin-cap Fibroatheroma (TCFA)

as a Precursor of Plaque Rupture as a Prototype of Vulnerable Plaque

Rodriguez-Granillo et al. JACC 2005;46:2038-42Naghavi et al. Circulation 2003;108:1664-72

Pathologic intimal thickening

Fibroatheroma (FA)

Thick-cap FA

Thin-cap FA (TCFA)

VH-IVUS Plaque Types

	PROSPECT ¹	ATHEROREMO ²	VIVA ³
Population	697 ACS patients	581 patients (318 ACS, 263 SA)	170 patients (70 ACS, 100 SA)
Imaging	3 vessel VH-IVUS	1 vessel VH-IVUS	3 vessel VH- IVUS
Median f/u	3.4 years	1 year	1.7 years
NCL-TCFA	22% (>30° of NC abutted the lumen)	37%	60%
Death/ MI	NCL-related 1%	NCL-related 3.8%	Total 2.4%
MACE Def.	CV death, MI, hospitalization from progressive angina	Death, ACS, unplanned revasc	Death, MI, unplanned revasc
MACE	NCL-related 11.6%	NCL-related 7.7%	Total 9.4%

Prospective natural history studies of non-culprit lesions

Stone G et al. NEJM 2011;364:226-35
 Calvert et al. JACC 2011;4:894–901
 Cheng et al. EHJ 2014;35:639-47

Predictors of Non-Culprit MACE PROSPECT

Stone G et al. NEJM 2011;364:226-35

- NewYork-Presbyterian

Predictors of Non-Culprit MACE

Cheng et al. EHJ 2014;35:639-47

PB>70% [HR 2.9]
TCFA [HR 1.9]

Predictors of Non-Culprit MACE

Univariable analysis

6 t c l v e t e t a l . JACC Cardiovasc Imaging 2011;4:894–901

Dynamic Change in TCFAPROSPECTHORIZON-AMI

Kubo et al. J Am Coll Cardiol 2010;55:1590-7

Zhao et al. JACC Imaging in press

R

CardioVascul

FFR 0.90

Serial Change During Statin TreatmentPlaque Regression GroupPlaque Progression Group

Taguchi et al. Am J Cardiol 2013;111:1246-52

VH Plaque Characteristics to Predict Distal Embolization

from 11 published articles

				NC Associate			ted With Distal Embolization			
First Author (Ref. #)	Year	N	Elective/ACS/ STEMI	NC Volume	% NC Volume	NC Area	% NC Area	VH-TCFA		
Kawaguchi et al. (8)	2007	71	STEMI	+	n/a	n/a	n/a	n/a		
Kawamoto et al. (9)	2007	44	Elective	n/a	n/a	+	n/a	n/a		
Nakamura et al. (15)	2007	50	STEMI	n/a	-	n/a	n/a	n/a		
Bae et al. (10)	2008	57	ACS	_	n/a	n/a	-	n/a		
Higashikuni et al. (12)	2008	49	ACS	n/a	+	n/a	+	n/a		
Bose et al. (11)	2008	55	Elective	+	+	n/a	n/a	n/a		
Hong et al. (13)	2011	190	ACS	+	- + -	+	+	+		
Hong et al. (14)	2009	80	Elective and ACS	+	+	+	+	n/a		
Ohshima et al. (16)	2009	44	STEMI	_*	_*	n/a	n/a	- +		
Yamada et al. (18)	2010	29	Elective	n/a	n/a	n/a	n/a	+		
Shin et al. (17)	2011	112	Unstable angina	+	n/a	+	+	n/a		

Claessen et al. JACC Cardiovasc Imaging 2012;5:S111-8

VH Necrotic Core and Inadequate Flow

Late ISR 63-year old male Stable angina

VLST 60-year old male AMI with VLST

Neoatherosclerosis is a Mechanism of Stent Failure

Stent failure OCT data from AMC

	DES-ISR ¹	BMS-ISR ²	VLST ³	
Lesion	50 DES	51 BMS	6 BMS	27 DES
Median F/U	32 Mo	132 Mo	109 Mo	62 Mo
Lipid or NC	90%	100%	100%	100%
OCT-TCFA	52%	68%	100%	56%
OCT-rupture	58%	59%	100%	63%
TLR	98%	all	all	all

1. Kang et al. Circulation 2011;123:2954-63

0

2. Kang et al. JACC Cardiovasc Imaging 2012;5:1267-8

3. Kang et al. JACC Cardiovasc Imaging 2013;6:695-703 🕁 Columbia Univer

- NewYork-Presbyterian

Tissue Characterization of Neointima

----- luminal border (exclude the catheter and its artifacts) ----- inner border of stent struts (exclude the struts)

Early neointima Fibrocalcific

ThCFA

TCFA Intimal rupture

Nakazawa et al. JACC Cariovasc Imaging 2009;2:625-8

Tissue Characterization of In-Stent Neointima Using Intravascular Ultrasound Radiofrequency Data Analysis

Soo-Jin Kang, MD^a, Gary S. Mintz, MD^b, Duk-Woo Park, MD^a, Seung-Whan Lee, MD^a, Young-Hak Kim, MD^a, Cheol Whan Lee, MD^a, Ki-Hoon Han, MD^a, Jae-Joong Kim, MD^a, Seong-Wook Park, MD^a, and Seung-Jung Park, MD^a,*

The longer f/u duration, the greater atherosclerotic change

Kang SJ et al. AJC 2010 ;106:1561-5

Neointimal VH Composition

47 BMS-ISR

*p<0.01 and #p<0.05, vs. lesions at follow-up time <6 months

Kang SJ et al. AJC 2010 ;106:1561-5

70 DES-ISR

Plaque behind calcium

Guidewire

Peri-stent halo

Isolated white pixel

Wrong lumen border

Wrong EEM border

Summary

- VH-TCFA is a predictor of NC-MACE, which has been validated by prospective trials
- VH-TCFA and a large necrotic core predict periprocedural MI
- VH-IVUS is useful in neointimal characterization and provides a surrogate of neoatherosclerosis

